ОЦЕНКА ЗНАЧИМОСТИ ВКЛАДА ГЕОЭКОЛОГИЧЕСКИХ ФАКТОРОВ В ФОРМИРОВАНИЕ ЭПИДЕМИОЛОГИЧЕСКИХ РИСКОВ. АНАЛИЗ ТАБЛИЦ СОПРЯЖЕННОСТИ МЕТОДОМ ЛОГАРИФМОВ ПРЕОБЛАДАНИЯ

С.А.Лаптёнок

Белорусский национальный технический университет, г. Минск, Республика Беларусь

Статья продолжает серию публикаций с анализом (на примере Воложинского и Столбцовского районов Минской области Республики Беларусь) связи заболеваемости населения злокачественными новообразованиями с проживанием на территориях с различными геоэкологическими характеристиками. Для количественной оценки значимости влияния геофизических факторов, действующих в зонах линеаментов земной коры, и фактора загрязнения территории радионуклидами на уровень заболеваемости населения злокачественными новообразованиями использовались методы обработки категоризованных данных, основанные на различных алгоритмах расчета корреляции сопряженных признаков, применяемых при анализе насыщенных моделей данных качественного характера, представляющих собой так называемые таблицы сопряженности. Для повышения точности первичной оценки осуществлялся расчет логарифмов преобладания (логитов) для каждого из изолированных и комбинированных факторов. Наиболее информативным контрольным показателем в таблицах являются значения $e^{\lambda}-1$, знак и абсолютное значение которых указывают на характер и значимость влияния каждого фактора (изолированного или комбинированного) на исследуемый процесс. Результаты свидетельствуют об определенном вкладе фактора радионуклидного загрязнения территории в повышение уровня заболеваемости. При этом, в населенных пунктах, расположенных в зоне над Украинско-Балтийским линеаментом, этот фактор, наоборот, способствовал определенному снижению уровня заболеваемости злокачественными новообразова-

Ключевые слова: Воложинский район; Столбцовский район; злокачественные новообразования; заболеваемость; Украинско-Балтийский линеамент; территории, загрязненные радионуклидами ¹³⁷Cs; пространственная категоризация; таблицы сопряженности; анализ.

В целях моделирования влияния природных и связанных с ними антропогенных факторов, действующих в зонах разломов земной коры, на различные аспекты жизнедеятельности человека, проведен первичный анализ заболеваемости населения Воложинского и Столбцовского районов злокачественными новообразованиями за период с 1953 по 2003 годы, в результате которого были рассчитаны интенсивные показатели заболеваемости по количеству случаев за каждый год и средней численности населения за весь изучаемый период, который затем был разделен на пять подпериодов: 01.01.1953—31.12.1964; 01.01.1965—31.12.1974; 01.01.1975—30.06.1984; 01.07.1984—30.06.1994; 01.07.1994—31.12.2003.

Проведена пространственная категоризация (табл. 1) всех случаев злокачественных новообразований у населения Воложинского и Столбцовского районов Минской области (свыше 7300, по данным Белорусского канцер-регистра) по территориальной принадлежности к зоне, расположенной на разломах и между разломами Украинско-

Балтийского суперрегионального линеамента (так называемой Ивенецко-Першайской зоне), к зонам, расположенным над другими региональными и локальными линеаментами, а также к зонам, расположенным вне линеаментов и кольцевых структур [1].

Для количественной оценки значимости влияния геофизических факторов, действующих в зонах линеаментов земной коры, и фактора загрязнения территории радионуклидами на уровень заболеваемости населения злокачественными новообразованиями в данном исследовании использовались методы обработки категоризованных данных, основанные на различных алгоритмах расчета корреляции сопряженных признаков [2–6]. Данные алгоритмы применяются при анализе насыщенных моделей данных качественного характера, представляющих собой так называемые таблицы сопряженности.

Для уровней интенсивных показателей заболеваемости в населенных пунктах при различных сочетаниях исследуемых факторов такие модели были

Таблица 1 Пространственная категоризация и условные обозначения категорий населенных пунктов

Обозначение	Содержание
«101»	Населенные пункты, находящиеся в зоне, расположенной над Украинско-Балтийским линеаментом, не загрязненной радионуклидами ¹³⁷ Cs
«102»	Населенные пункты, находящиеся в зоне, расположенной над Украинско-Балтийским линеаментом, загрязненной радионуклидами ¹³⁷ Cs
«111»	Населенные пункты, находящиеся в зоне, расположенной над разломами, образующими Украинско-Балтийский линеамент, не загрязненной радионуклидами ¹³⁷ Cs
«112»	Населенные пункты, находящиеся в зоне, расположенной над разломами, образующими Украинско-Балтийский линеамент, загрязненной радионуклидами ¹³⁷ Cs
«200»	Населенные пункты, находящиеся в зоне, расположенной вне Украинско-Балтийского линеамента, не загрязненной радионуклидами ¹³⁷ Cs
«202»	Населенные пункты, находящиеся в зоне, расположенной вне Украинско-Балтийского линеамента, загрязненной радионуклидами ¹³⁷ Cs

построены по схеме, представленной в табл. 2. Здесь категория A_1 означает населенные пункты, расположенные вне зоны Украинско-Балтийского линеамента (УБЛ), категория A_2 – населенные пункты, расположенные в зоне над Украинско-Балтийским линеаментом, а категория A_3 — населенные пункты, расположенные над разломами, образующими Украинско-Балтийский линеамент; категория B_1 означает населенные пункты, расположенные на территориях, не загрязненных 137 Cs, B_2 — на загрязненных 137 Cs территориях (табл. 2). Категории соответствуют результатам пространственной категоризации данных, описанной в табл. 1.

В работе [1] приведены построенные модели для всего периода наблюдения и для отдельных подпериодов.

Для повышения точности первичной оценки значимости влияния геофизических факторов, действующих в зонах линеаментов земной коры, и фактора загрязнения территории радионуклидами на уровень заболеваемости населения злокачественными новообразованиями, произведенной в [1], осуществлялся расчет логарифмов преобладания (логитов) для каждого из изолированных и комбинированных факторов [2–6]. В табл. 3–8 представлены расчетные значения для различных периодов наблюдения. Наиболее информативным контрольным показателем в таблицах являются значения е^λ-1, знак и абсолютное значение кото-

Таблица 2 Таблица сопряженности для интенсивных показателей по категориям

	B_1	B_2
A_1	200	202
A_2	101	102
A_3	111	112

Таблица 3 Количественная оценка значимости факторов, влияющих на риск формирования злокачественных новообразований, за период с 01.01.1953 г. по 31.12.2003 г.

_	1		
Фактор	λ	e^{λ}	e ^λ -1
A_1	-0.019	0.981	-0.019
A_2	0.003	1.003	0.003
A_3	0.015	1.015	0.015
B_1	-0.014	0.986	-0.014
B_2	0.014	1.014	0.014
A_1B_1	0.055	1.057	0.057
A_1B_2	-0.055	0.946	-0.054
A_2B_1	-0.007	0.993	-0.007
A_2B_2	0.007	1.007	0.007
A_3B_1	-0.049	0.953	-0.047
A_3B_2	0.049	1.050	0.050

Таблица 4

Количественная оценка значимости факторов, влияющих на риск формирования злокачественных новообразований, за период с 01.01.1953 г. по 31.12.1964 г.

Фактор	λ	e^{λ}	e ^λ -1
A_1	-0.150	0.861	-0.139
A_2	-0.030	0.971	-0.029
A_3	0.179	1.196	0.196
B_1	0.142	1.153	0.153
B_2	-0.142	0.867	-0.133
A_1B_1	-0.051	0.951	-0.049
A_1B_2	0.051	1.052	0.052
A_2B_1	-0.228	0.796	-0.204
A_2B_2	0.228	1.256	0.256
A_3B_1	0.278	1.321	0.321
A_3B_2	-0.278	0.757	-0.243

Таблица 5

Количественная оценка значимости факторов, влияющих на риск формирования злокачественных новообразований, за период с 01.01.1965 г. по 31.12.1974 г.

Фактор	λ	\mathbf{e}^{λ}	e ^λ -1
A_1	-0.115	0.891	-0.109
A_2	-0.050	0.951	-0.049
A_3	0.166	1.180	0.180
B_1	-0.066	0.937	-0.063
B_2	0.066	1.068	0.068
A_1B_1	0.138	1.148	0.148
A_1B_2	-0.138	0.871	-0.129
A_2B_1	0.006	1.006	0.006
A_2B_2	-0.006	0.994	-0.006
A_3B_1	-0.144	0.865	-0.135
A_3B_2	0.144	1.155	0.155

Таблица 6

Количественная оценка значимости факторов, влияющих на риск формирования злокачественных новообразований, за период с 01.01.1975 г. по 30.06.1984 г.

Фактор	λ	e^	e^-1
A_1	0.075	1.078	0.078
A_2	0.056	1.058	0.058
A_3	-0.131	0.877	-0.123
\mathbf{B}_1	0.032	1.033	0.033
B_2	-0.032	0.968	-0.032
A_1B_1	0.018	1.019	0.019
A_1B_2	-0.018	0.982	-0.018
A_2B_1	-0.133	0.876	-0.124
A_2B_2	0.133	1.142	0.142
A_3B_1	0.114	1.121	0.121
A_3B_2	-0.114	0.892	-0.108

рых указывают на характер и значимость влияния каждого фактора (изолированного или комбинированного) на исследуемый процесс.

Анализ результатов, представленных в табл. 3—8, в целом подтверждает тенденции, выявленные в [1]. Так, значение e^{λ} -1 для фактора B_2 (загрязнение территории радионуклидами $^{137}\mathrm{Cs}$) за весь период наблюдения составило 0.014 (незначительный положительный вклад) (табл. 3). В среднем за период с 01.07.1984 г. по 31.12.2003 г. (табл. 7, 8) значения данного параметра превышают значения, относящиеся к периоду с 01.01.1953 г. по 30.06.1984 г. (табл. 4—6). Следовательно, фактор радионуклидного загрязнения обусловливает определенное повышение уровня заболеваемости злокачественными новообразованиями.

Таблица 7

Количественная оценка значимости факторов, влияющих на риск формирования злокачественных новообразований, за период с 01.07.1984 г. по 30.06.1994 г.

Фактор	λ	e^{λ}	e ^λ -1
A_1	-0.155	0.857	-0.143
A_2	-0.156	0.855	-0.145
A_3	0.311	1.365	0.365
B_1	-0.156	0.855	-0.145
B_2	0.156	1.169	0.169
A_1B_1	0.162	1.176	0.176
A_1B_2	-0.162	0.851	-0.149
A_2B_1	0.150	1.162	0.162
A_2B_2	-0.150	0.860	-0.140
A_3B_1	-0.312	0.732	-0.268
A_3B_2	0.312	1.366	0.366

Таблина 8

Количественная оценка значимости факторов, влияющих на риск формирования злокачественных новообразований, за период с 01.07.1994 г. по 31.12.2003 г.

Фактор	λ	e^{λ}	e ^λ -1
A_1	-0.037	0.964	-0.036
A_2	-0.052	0.949	-0.051
A_3	0.089	1.093	0.093
B_1	0.016	1.016	0.016
B_2	-0.016	0.984	-0.016
A_1B_1	-0.002	0.998	-0.002
A_1B_2	0.002	1.002	0.002
A_2B_1	0.181	1.198	0.198
A_2B_2	-0.181	0.835	-0.165
A_3B_1	-0.179	0.836	-0.164
A_3B_2	0.179	1.196	0.196

Значение е $^{\lambda}$ -1 для фактора A_2B_2 (загрязнение территории над УБЛ радионуклидами 137 Cs) за весь период наблюдения практически равно нулю (табл. 3). В период с 01.07.1984 г. по 31.12.2003 г. данный параметр имеет значимо отрицательные значения (табл. 7, 8), в период с 01.01.1953 г. по 30.06.1984 г. — значимо отрицательные либо практически равные нулю (табл. 4—6). Следовательно, фактор радионуклидного загрязнения обусловливает определенное снижение уровня заболеваемости злокачественными новообразованиями в населенных пунктах, расположенных в зоне над Украинско-Балтийским линеаментом.

Литература

1. Лаптёнок, С.А. Оценка значимости вклада геоэкологических факторов в формирование эпидемио-

- логических рисков. Построение и первичный анализ таблиц сопряженности / С.А.Лаптёнок // Вопросы организации и информатизации здравоохранения. 2015. №2. С.92–95.
- 2. *Аптон, Г.* Анализ таблиц сопряженности / Г.Аптон. М.: Финансы и статистика, 1982. 143 с.
- Goodman, L.A. Analysing qualitative/categorial data.
 Loglinear models and latent-structure analysis /
 L.A.Goodman. L.: Addison Wesley Publ. Co., 1978.
 355 p.
- 4. *Mosteller, F.* Association and estimation in contingency tables // F.Mosteller // J. Amer. Statist. Assoc. 1968. No.63. P.1–28.
- Бубнов, В.П. Решение задач экологического менеджмента с использованием методологии системного анализа / В.П.Бубнов, С.В.Дорожко, С.А.Лаптёнок. – Минск: БНТУ, 2009. – 266 с.
- 6. *Лаптёнок, С.А.* Оценка влияния некоторых струмогенных факторов на развитие зоба у детей методом логарифмов преобладания / С.А.Лаптёнок // Здравоохранение. 1998. №7. С.43–46.
- 7. Лаптёнок, С.А. Информационно-аналитический комплекс для математической обработки медико-экологических данных в целях решения задач по минимизации последствий чрезвычайных ситуаций: автореф. дис. ... канд. техн. наук: 05.26.02 / С.А.Лаптёнок; ИРБ «БЕЛРАД». Минск, 2001. 23 с.
- 8. Лаптёнок, С.А. Оценка влияния некоторых струмогенных факторов на развитие зоба у детей методом приращения информации / С.А.Лаптенок, Н.В.Арсюткин // Медико-биологические аспекты аварии на Чернобыльской АЭС. 1998. №3. С.22—26.
- 9. *Лаптёнок, С.А.* Системный анализ геоэкологических данных в целях митигации чрезвычайных ситуаций / С.А.Лаптёнок. Минск: БНТУ, 2013. 287 с.

EVALUATION OF SIGNIFICANCE OF THE GEO-ECOLOGICAL FACTORS CONTRIBUTION TO FORMATION OF EPIDEMIOLOGICAL RISKS. ANALYSIS OF

CONTINGENCY TABLES BY METHOD OF LOGARITHMS OF PREVALENCE

S.A.Laptyonok

Belarusian National Technical University, Minsk, Republic of Belarus

This article resumes a series of the authors' publications analyzing (the Volozhin and Stolbtsy districts of the Minsk Region of the Republic of Belarus as an example) the link between the cancer morbidity and living in areas with different geoecological characteristics. In order to quantify a significance of the geophysical factors influence in areas of lineaments of the earth's crust and the factor of the radionuclide contamination of the territory upon the cancer morbidity level, methods of the categorized data processing were used. These methods were based on different algorithms for calculating the correlation of contingent indications used for analyzing the saturated model of the qualitative data, representing the so-called contingency tables. Calculation of the logarithms of prevalence (logits) for each of isolated or combined factors was performed for improving the accuracy of initial evaluation. The most informative benchmark in tables is value of e^{λ} -1, sign and absolute value of which indicate nature and significance of impact of each factor (isolated or combined) on the analyzed process. These results reveal a certain contribution of radionuclide contamination of the territory to a morbidity increase. But, on the contrary, this factor contributed to a certain reduction in prevalence of malignant neoplasms in the settlements, located in the area of Ukrainian-Baltic lineament.

Keywords: Volozhin District; Stolbtsy District; malignant neoplasms, morbidity; Ukrainian-Baltic lineament; ¹³⁷Cs radionuclide contaminated territories, spatial categorization; contingency tables; analysis.

Поступила 20.07.2015 г.